
NEXTSTEP In Focus, Summer 1993 (Volume 3, Issue 3).
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

NetInfo Binding and Connecting
Alan M. Marcum and Marc Majka

To get information from NetInfo, a client process must communicate with
a server process. There are two ways to contact a NetInfo server: through
the domain hierarchy, or directly. For example, NetInfoManager allows
you to open a domain using the Open command or the Open by Tag
command (both in the Domain menu), and command-line utilities such as
niutil allow you to specify a domain by path or by tag.
To contact a server directly, all a client needs is the address of the
computer running the server and the tag of the database the server is
using. contacting the server through the hierarchy is conceptually more
complicated, though: The hierarchy must first be built, and then the client
must get information about the hierarchy.
This article explains how domains find their parents, how clients find
NetInfo servers, and the difference between the two processes.

WHAT IS BINDING?
The NetInfo domain hierarchy is built dynamically, based on the structure
of the hierarchy specified in the serves properties in the directories in a
domain's /machines directory. The hierarchy is built from the bottom
upÐthat is, from the local domains to their parents, and so on until the
root domain is found. (More on this later.)
If there are more than two domains in a NetInfo domain hierarchy, no one
process determines the entire hierarchy. Rather, the hierarchy is based on
the collected information of all the netinfods.

When a netinfod locates a server for its parent domain, it's said to bind
to that server. Exactly how it finds such a server is described below.

Binding and nibindd

Each domain uses binding to find its place in the domain hierarchy. The
process that handles binding requests is nibindd. This daemon also
automatically starts up NetInfo when a computer starts up, by starting
the netinfod processes that run locally on the computer.
If a domain has a parent domain, the domain's netinfod finds a server
for the parent by communicating with an appropriate nibindd. (If the
domain doesn't have a parent, then it's the root domain of the hierarchy.)

Starting netinfod

When a computer starts up, /etc/rc invokes nibindd to start up NetInfo.
As noted above, one of nibindd's tasks is to start the netinfod
processes that run on a computer. At startup, nibindd looks in the
directory /etc/netinfo for directories that end with the extension .nidb,
such as local.nidb. It starts a netinfod daemon for each .nidb directory
it finds.
When each netinfod daemon starts, it checks the consistency of its
database. If the database contains a checksum file, that means
netinfod shut down cleanly the last time it ran, and no consistency
check is needed. If the file isn't there, though, the daemon examines the
database, repairing any damage it finds. This consistency checking can
take a long time, up to 20 minutes or even longer for extremely large
databases.
Once the database's consistency is verified, the daemon determines
whether it's a clone or the master. Then, if the daemon is running the
database tagged local, it binds to its parent. If netinfod is using a

database tagged anything other than local, it won't bind to its parent yet.
Next, netinfod registers itself with nibindd. The last step in preparing to
provide services depends on whether the server is the master or a clone.
If it's the master server of the domain, it informs all the clones that the
master just restarted; if it's a clone, it contacts the master to determine if
its database is up to date.
When does a non-local netinfod bind to its parent domain? Only when a
client process asks for the address and tag of its parent server; see
ªContacting the third-level domainº later in this article.

Finding the parent domain

To find its parent domain, netinfod examines its database's /machines
directory, looking for directories with serves properties containing the
value ../SomeTag. Each subdirectory of /machines represents a
computer, and each computer that has this property and value is a host
of one of the parent domain's servers. Once netinfod has identified the
parent server computerÐor server computers, if there are clonesÐit sends
a message to the nibindd on it asking to bind to it.
Are you my mother?

In the simplest binding case, the parent domain's computer is explicitly
named in the child domain's database. For example:
name: cadet
ip_address: 192.42.172.6
serves: ../network

In this case, the local computer sends a message to the parent's
computer, asking to bind to the parent domain's server. Here, the
parent's computer is 192.42.172.6.
The request to bind to a potential parent server is actually a sequence of
these ªAre you my mother?º requests    (with apologies to P. D. Eastman

(Eastman 1988)), one to each potential parent. The child daemon sends a
message to nibindd at each potential parent, asking if that computer has
a netinfod that serves its parent domain. It contacts all the potential
parent server machines at the same time, rather than contacting one
potential parent, awaiting a request, and then contacting another if
necessary.
For example, suppose some database is tagged local, its parent's
database is tagged network, and the child daemon is running on ranger
whose Internet address is 192.42.172.34. The ªAre you my mother?º
message says something like:

I'm a netinfod, on computer ranger [192.42.172.34] running with a
database tagged local. I'm looking for a netinfod serving a domain
tagged network of which my domain is a child. Are you my mother?

The abbreviated version is:
local on 192.42.172.34 binding to network; are you my mother?

This request is in the form of a SunRPC to nibindd. It's officially called
the NIBIND_BIND procedure in the NIBIND SunRPC protocol definition.

A brief diversion: protocols and nomenclature

There are two different protocols used by the NetInfo system: the NetInfo
Binder Protocol, NIBIND, and the NetInfo Data Protocol, NI. Only messages
in the binder protocol are sent to nibindd, and only messages in the data
protocol are sent to netinfod. Both of these protocols use the SunRPC
protocol, which can run over either TCP or UDP, depending on which the
implementor chose.
Each of the messages in the NetInfo protocols, NIBIND and NI, has a
name. As implied above, the ªAre you my mother?º message is the BIND
message in the NIBIND protocol. As you might expect in a data access
protocol, two of the messages in the NI protocol are READ and WRITE,

performing the expected operations. These messages are NIBIND_BIND,
NI_READ, and NI_WRITE, to give you some examples. This nomenclature
allows us to distinguish between similar messages for the two different
protocols, when those exist.
End of diversion.

Serving binding requests

When an nibindd receives an NIBIND_BIND request, it first checks to
determine whether it has a netinfod registered with that tag running on
its computer. If there's no appropriate netinfod, the receiving nibindd
ignores the requestÐit never replies ªno,º only, when appropriate, ªyes.º
If instead nibindd finds an appropriate netinfod, it forwards the binding
request along to the netinfod process, using the NetInfo protocol's BIND
request, NI_BIND.
The receiving netinfod process then checks its /machines directory,
looking for a directory with the appropriate value of ip_address with a
serves property that includes the value SomeDomain/tag. Here, it looks
for /machines/ip_address = 192.42.172.34, and then looks for a
serves property value of SomeDomain/local. As with NIBIND_BIND, if it
doesn't find an appropriate directory, it doesn't send an answer.
If netinfod finds the appropriate information in the /machines directory,
it sends a ªyesº answer back to the caller, which in this case is the
nibindd on the same computer. The nibindd forwards that answer to the
child netinfod that sent the original request.

When broadcasthost has the serves property

One interesting variation on binding to the parent domain's server is the
case where the parent domain is served by broadcasthost. The NetInfo
directory /machines/broadcasthost in a local NetInfo domain normally
contains a serves property whose value is ../network. This configuration

would appear to indicate that a server with the tag network is part of the
parent domain of the local domain, and that it runs on the computer
named broadcasthost. So, does every NetInfo network need to have a
computer called broadcasthost?
Actually, broadcasthost represents not a specific computer, but rather
the generic local network broadcast address, 255.255.255.255. This
address is used to contact all the computers on the local network or
subnet, regardless of their network numbers. When broadcasthost is
specified as serving the parent domain, the child domain's netinfod
sends an NIBIND_BIND to the nibindds on all computers on the local
network implicitly, by sending one message as a broadcast. The message
is the usual, ªAre you my mother?º It gets an answer from every
computer that's running a parent netinfod.
This means that the child netinfod might get multiple responses, even
many responses. However, the network won't be flooded with ªnoº
answers from computers that don't have appropriate parent domain
daemons. The child domain chooses the first reply to arrive.

Multiple explicit parent servers

Another variation on binding to the parent domain is that where a domain
has more than one /machines subdirectory with a serves property
indicating a parent domain server. This would be the case when a domain
has clone servers. For example, at Rhino Aviation the root domain is
served by processes on super21, exec, mustang, sabre, and
chaparral; in the /mktg domain, netinfods on both super21 and
mustang are listed as parent domain servers.
When netinfod network looks for its parent, it sends the ªAre you my
mother?º message to each computer with the appropriate serves
property. This techniqueÐtransmitting the same message to several
different computersÐis called manycasting. As with broadcasting, the first
reply to the binding request wins. (Manycasting is different from

multicasting, a technique used to address a specific, defined group of
computers; see Comer 1991.)
Incidentally, to optimize performance netinfod always tries to bind to a
local parent if there is one before binding to a remote parent. That is, if
the local computer is listed as serving the parent, netinfod binds to the
parent domain server on the local computer rather than trying to bind to
a parent on another computer.

An example of locating the parent domain

Here's what happens when a computer at Rhino Aviation starts up.
ranger is host to only a server of its local domain. It has the defaults for
the serves properties and ip_address properties set in /machines. Both
its Internet address and host name are configured automatically.

Packet Source Destination Protocol Message
1 ranger broadcast portmap RPC Indirect call:

nibind(192.42.172.34, local, network).
2 cadet ranger nibind reply I'm your mother; my nibindd is on

UDP port 644.
3 exec ranger nibind reply I'm your mother; my nibindd is on

UDP port 706.
4 ranger broadcast ARP request What's Ethernet address for Internet

address 192.42.172.4?
5 exec ranger ARP reply Ethernet address for IP 192.42.172.4

is 0:aa:0:18:83:2a.
6 ranger exec ICMP Destination port unreachable.

Figure 1:    Simple binding of netinfod local to a parent

Figure 1 shows the messages exchanged when ranger's netinfod local
binds to its parent domain server. First, ranger broadcasts a message to
all the computers on the local network looking for a parent NetInfo server
for the local domain (packet 1). In packets 2 and 3, two computers

answer: cadet and exec. Since cadet was the first computer to answer,
its netinfod network becomes the parent domain server to ranger's
netinfod local.
When exec and cadet reply to the binding request, each sends a
message to the same port on ranger. Once ranger receives the first
response in packet 2, it closes its reply port. When subsequent replies
arrive, ranger sends an ªerrorº message (ICMP Destination port
unreachable) back, as shown in packet 6. This message is ignored by
exec's nibindd at this stage of operation in the NetInfo binding protocol.
To send the ICMP message to exec, ranger needs to know exec's
Ethernet address. This is why it sends the ARP message in packet 4, with
subsequent ARP reply in packet 5.

BINDING THE REST OF THE HIERARCHY
Now, netinfod for the local domain has found a server for its parent
domainÐit's bound to its parent server. But, it has exchanged no
messages with domains other than local's parent, so the rest of the
hierarchy remains, in a sense, unknown. Indeed, though there's a binding
to local's parent, there's no connection yet from a NetInfo client process
to that parent. Only the existence of the parent and the Internet address
of its computer have been determined, not even how to contact the
parent.
However, each netinfod in its turn binds to a parent domain. So,
collectively the hierarchy is known. This information is then used when a
client needs to connect to one of the higher-level domains to obtain
information.

CONNECTING TO A DOMAIN
A NetInfo server locates a server for its parent domain by binding. A

NetInfo client then connects to a server for a domain. When a client
connects to a second-level or higher domain, it inherits the bindings of
the netinfods.
Figure 2 shows what happens when a client requests a piece of
information that isn't available from the local domain. In this example,
the account information for the user eng has been requested. This
example assumes the binding shown in Figure 1 has completed.

Packet Source Destination Protocol Message
1 ranger broadcast ARP request What is the Ethernet address for

Internet address 192.42.172.6?
2 cadet ranger ARP reply Ethernet address for IP 192.42.172.6

is 0:0:f:0:59:82.
3 ranger cadet Portmap RPC What is the UDP port for the netinfobind

program, version 1?
4 cadet ranger RPC reply Port 722.
5 ranger cadet netinfobind RPC getregister("network")
6 cadet ranger RPC reply UDP port 724, TCP port 726.
7 ranger cadet TCP Window size 4096?
8 cadet ranger TCP OK; window size 4096?
9 ranger cadet TCP Window size 4096 OK.
10 ranger cadet netinfo RPC root_directory()
11 cadet ranger RPC reply root directory's handle is {0,36}

(directory 0, instance 36).
12 ranger cadet netinfo RPC lookup({0, 36}, "name", "machines")
13 cadet ranger RPC reply /machines is [1,{0,36}]

(directory 1 in {0,36}).
14 ranger cadet netinfo RPC list(/machines, "serves")
15 cadet ranger RPC reply Each directory's ID number and

serves property values.
16 ranger cadet netinfo RPC listprops(/machines/cadet)

17 cadet ranger RPC reply The properties in /machines/cadet.
18 ranger cadet netinfo RPC readprop(/machines/cadet, ip_address)
19 cadet ranger RPC reply 192.42.172.6
20 ranger cadet netinfo RPC listprops(/machines/exec)
21 cadet ranger RPC reply The properties in /machines/exec.
22 ranger cadet netinfo RPC readprop(/machines/exec, ip_address)
23 cadet ranger RPC reply 192.42.172.4
24 ranger cadet netinfo RPC root_directory()
25 cadet ranger RPC reply {0,36}
26 ranger cadet netinfo RPC lookup({0,36}, "name", "users")
27 cadet ranger RPC reply [158, {0,36}]
28 ranger cadet netinfo RPC lookup_read(/users, "name", "eng")
29 cadet ranger RPC reply Contents of /users/eng.
30 ranger cadet TCP Receipt acknowledged.

Figure 2:    Fetching information from a parent domain

First, the client process needs to contact the server for the second-level
domain. Packets 1 through 4 obtain the address information for the
nibindd running on cadetÐrecall that cadet is where the chosen
netinfod network is running. Packets 5 and 6 get the addresses of the
netinfod network running on cadet. Packets 7 through 9 are TCP
protocol overhead, setting up a TCP connection to cadet's netinfod
network on TCP port 726.
The client process now has a connection established to the chosen server.
After establishing the connection, the client obtains a list of the known
servers of the domain, in case the chosen server for the domain fails and
a new server must be contacted. Packets 10 through 13 obtain the
ªhandleº for the /machines directoryÐa handle is how directories are
referenced within NetInfo. First, it gets the handle for the root directory,

then the handle for the directory machines within that root directory.
Next, in packets 14 and 15 the client acquires the values for the serves
properties in each subdirectory of /machines. From these, the client can
determine which computers provide services for a parent netinfod, by
finding serves properties with a dot (.) in the domain portion of the
value. Then, in packets 16 through 23, the client on ranger requests the
Internet address of each of the computers with a server for the parent
domain. In this case, those servers are running on machines with Internet
addresses 192.42.172.6 (cadet) and 192.42.172.4 (exec).
Finally, packets 24 through 29 read the properties in /users/eng. Again,
the client requests the handle for the root directory. It then gets the
handle for /users, and finally gets the actual data. Packet 30 is TCP
overhead acknowledging receipt of the answer. Other TCP
acknowledgments were piggybacked on top of request or reply packets
(see Comer 1991).
Notice that the actual data lookup required only the last three packets,
which include one packet of TCP overhead. Packets 1±23 establish the
connection, and 24±27 get the handle for /users. In the case of
lookupd, the primary NetInfo client, the connection is usually already
established, and the handles for the root and the /users directories are
usually cached. In the example in Figure 2, when a client on ranger
needs to contact local's parent, it inherits the binding between netinfod
local on ranger and the netinfod network running on cadet.

Contacting the third-level domain

When a client requests information that's in neither the first-level nor the
second-level domain, the third level is contacted. Figure 3 shows the
sequence of messages that get the account information for the user
sandy, this time from the root domain.

Packet Source Destination Protocol Message

1 ranger cadet netinfo RPC remote_parent
2 cadet ranger RPC reply ["Rhino", 192.42.172.4]
3 ranger exec Portmap RPC getport(UDP, netinfobind, 1)
4 exec ranger RPC reply Port 658.
5 ranger exec netinfobind RPC getregister("Rhino")
6 exec ranger RPC reply UDP port 660, TCP port 662.
7 ranger exec TCP Window size 4096?
8 exec ranger TCP OK; window size 4096?
9 ranger exec TCP Window size 4096 OK.
10 ranger exec netinfo RPC root_directory()
11 exec ranger RPC reply {0,69}
12 ranger exec netinfo RPC lookup({0,69}, "name", "machines")
13 exec ranger RPC reply [3,{0,69}]
14 ranger exec netinfo RPC list(/machines, "serves")
15 exec ranger RPC reply Each directory's ID number and

serves property values.
16 ranger exec netinfo RPC listprops(/machines/super21)
17 exec ranger RPC reply The properties in /machines/super21.
18 ranger exec netinfo RPC readprop(/machines/super21,

ip_address)
19 exec ranger RPC reply 192.42.172.2
20 ranger exec netinfo RPC listprops(/machines/exec)
21 exec ranger RPC reply The properties in /machines/exec.
22 ranger exec netinfo RPC readprop(/machines/exec, ip_address)
23 exec ranger RPC reply 192.42.172.4
24 ranger exec netinfo RPC listprops(/machines/mustang)
25 exec ranger RPC reply The properties in /machines/mustang.
26 ranger exec netinfo RPC readprop(/machines/mustang,

ip_address)
27 exec ranger RPC reply 192.42.172.5

28 ranger exec netinfo RPC listprops(/machines/sabre)
29 exec ranger RPC reply The properties in /machines/sabre.
30 ranger exec netinfo RPC readprop(/machines/sabre, ip_address)
31 exec ranger RPC reply 192.42.172.66
32 ranger exec netinfo RPC listprops(/machines/chaparral)
33 exec ranger RPC reply The properties in /machines/chaparral.
34 ranger exec netinfo RPC readprop(/machines/chaparral,

ip_address)
35 exec ranger RPC reply 192.42.172.98
36 ranger exec netinfo RPC root_directory()
37 exec ranger RPC reply {0,69}
38 ranger exec netinfo RPC lookup({0,69}, "name", "users")
39 exec ranger RPC reply [308, {0,69}]
40 ranger exec netinfo RPC lookup_read(/users, "name", "sandy")
41 exec ranger RPC reply Contents of /users/sandy.
42 ranger exec TCP Receipt acknowledged.

Figure 3:    Fetching information from a parent's parent

The sequence actually begins with a failure to find the requested
information in the second-level domain. If the client already has a
connection to the second-level domain, the exchange includes an analog
to packet 29 from Figure 2, requesting the properties in /users/sandy,
and a reply stating the information wasn't found. Operations continue
with the conversation as shown in Figure 3.
Figure 3 is very similar to Figure 2. Indeed, packets 3 through 27 are
exactly the initial connection process, although because the connection is
to a different domain and different servers, the packets themselves are
slightly different. Packets 28 through 34 repeat the acquisition of the
properties in the /users subdirectoryÐ/users/sandy in this case.

The new packets here are 1 and 2. These packets are the remote parent
request and reply. When a NetInfo client communicates with a domain
higher than the local domain's parent, it inherits the parent-to-
grandparent binding.
If the NetInfo client on ranger needs to contact cadet/network's parent,
it inherits the binding between cadet/network and netinfod Rhino, to
which cadet/network is bound. It obtains this information using the
NetInfo Remote Parent, or NI_RPARENT, request. NI_RPARENT requests
the tag and the Internet address of the server of the parent of the
receiving netinfod.
In this example, local's parent, cadet/network, is bound to the
netinfod Rhino on exec (Internet address 192.42.172.4), exec/Rhino.
If the client had already obtained the binding to the third level, and if that
domain's root and /users directories had already been referenced and
cached, then the sequence would have been much simpler, involving only
a failed attempt to read /users/sandy from the second-level domain and
a successful attempt to read it from the third-level domain.

BINDING AND CONNECTING FAILURES
Two problems that can come up in regard to binding and connecting are
that there might be no servers available for a particular domain, or that a
server to which a client had been connected could go down.

Failure binding netinfod local to a parent

When netinfod local starts, it tries to contact a parent domain server if
it believes one exists and the network is enabled. If the request for a
parent times out, the child displays a message on its console:
Still searching for parent network
administration (NetInfo) server.

Please wait, or press 'c' to continue without network user accounts.

See your system administrator if you
need help.

The timeout period prior to printing this warning is 30 seconds. This
message is displayed only when the initial binding of netinfod local fails.
It's not displayed for other domains binding to their parents, nor is it
displayed during rebinding or reconnecting.
netinfod local continues to look for a parent domain server after
displaying this message. It continues searching until either it finds a
parent, you press c, or you shut down the computer.
It's because of this special treatment of the database tagged local that
this tag is reserved for the local NetInfo domain and the first-level domain
should be tagged local.
Incidentally, you can customize the searching message by modifying the
file NetInfo.strings in /usr/lib/NextStep/Resources/English.lproj.

Failure binding to a parent's parent

Only netinfod local waits for a parent server to respond before
continuing. Back in the beginning of this article, we said that servers
other than that for local only bind to their parent servers when a client
requests this binding information. So, what happens if when a client asks
a server for its parent (using NI_RPARENT), the server hasn't yet bound
to a parent, and no parent server responds?
A message is sent to the system log (syslog) noting that a NetInfo
timeout occurred. As with local binding to its parent, the netinfod
hereÐnetinfod network, for exampleÐcontinues sending out
NIBIND_BIND requests, looking for a parent. ªThe Tough Stuffº describes
these messages and their causes in more detail.
A higher-level binding problem is likely to manifest itself first when a

third- or higher-level domain is accessed during a request for data. This
might happen when a computer starting up tries to mount a remote file
system. Again, unlike binding of the first-level domain to the second-level
domain, no message noting the binding failure is displayed.

Failures after initial binding

If, after a client connects to a server, a request to that server times out,
you might see messages like this:
netinfo timeout, sleeping

If the condition persists, you'll see this message:
netinfo failure, sleeping

Once this message is displayed on syslog, which is normally sent to the
console, the NetInfo client attempts to find a server for the domain again.
Remember the packets sent and received when a client first obtains data
from a NetInfo server in Figure 2? Some of the communication included
the client getting a list of all the servers for the contacted domain. Here's
where that list of servers is used. The client attempts to reconnect to the
domain by sending a message to each of the machines in that list. Just
like when a domain binds to its parent during or after start-up, this
request is in the form of a manycast.
The NIBIND_GETREGISTER message is sent, just as in the initial
connection conversation. And, just like the initial binding or connection,
the first reply to the manycast that's received is the winner, and that
server is chosen for the connection.
Note: The document references in this and other articles in this issue
refer to the books and articles listed in ªNEXTSTEP Networking
References.º

FINDING SERVER PROCESSES
Processes communicate over TCP and UDP using ports, which are abstract source and
destination points (Comer 1991). How does a client process find the port for a NetInfo daemon? It
must either already know the port number, or contact a process that finds port numbers.

Well-known ports
Ports are numbered, and some port numbers are well-knownÐthey're reserved for use by certain
services or particular functions. As an analog, the telephone numbers for directory assistance
throughout the U.S.Ð411 for local information, 555-1212 in all area codes for long distance
informationÐare reserved. Dialing one of them always reaches the directory assistance service. In
networking, ports with numbers less than 256 are reserved and can become well-known.

One well-known port, port 111 for both TCP and UDP, allows a client to contact a service called
the portmapper. The portmapper is like directory assistance, only instead of matching names to
telephone numbers, it translates SunRPC program numbers into port numbers. In portmapper
parlance, this is the operation PMAPPROC_GETPORT. The portmapper allows clients to find
many SunRPC programs without having to reserve a well-known port for each one.

NetInfo and the portmapper
The NetInfo binding daemon, nibindd, checks in with the portmapper when it starts up. To
determine the port for contacting nibindd, a client first sends a message to the portmapper on port
111 requesting the port number for nibindd. In fact, if you examine the information from the
portmapper using the UNIX rpcinfo program, you'll see that netinfobind, SunRPC program
number 200100001, can be found on different ports on different computers. (See the UNIX
manual pages to find out about rpcinfo.)

When a NetInfo clientÐwhether it's a netinfod or some other client, like lookupdÐbegins to
communicate with a NetInfo server, it has to determine that server's port number. It does this by
asking the nibindd running on that server's computer for the port number of the netinfod serving
that tag. It finds the nibindd's port number by asking the portmapper for it.

An example
For example, to see which daemons are running on a host you would run the nidomain -l
command:

mite-23% nidomain -l
tag=local udp=660 tcp=664
tag=network udp=664 tcp=666

nidomain -l communicates with nibindd to determine which netinfod daemons are running on a
computer. In this instance, mite has two netinfods running, or more precisely two that have
registered with nibindd. The first, serving a database tagged local, can be contacted over UDP
on UDP port number 660, and over TCP on TCP port number 664. The second, serving a
database tagged network, can be reached on UDP port 664 and TCP port 666.

Communicating with many portmappers
A child netinfod binding to a parent might communicate with scores or hundreds of computers,
depending on how many parent servers are listed and whether it's using a broadcast address.
How does netinfod keep track of all those different port numbers from the portmappers? Sure,
one broadcast message can be sent to all the portmappers: portmapper uses a single well-known
port. But isn't there an awful lot of bookkeeping needed to track all the answers from all the
portmappers?

It turns out that the portmapper can do a little magic. In addition to translating SunRPC program
numbers into port numbers, it can invoke a SunRPC indirectly. This operation is
PMAPPROC_CALLIT.

The child netinfod, when trying to bind, sends the portmapper a request to run the NIBIND_BIND
procedure of the netinfobind SunRPC program; portmapper then returns the results to the child.
The lack of a "no" answer in the NetInfo binding protocol applies to this method of invocation,
too.ÐAMM

TEMPORARY NETINFO DIRECTORIES
You know about the directories in /etc/netinfo with an .nidb suffix, which contain NetInfo
databases. Sometimes though, you might see directories with two other suffixes: .temp and
.move.

A .temp directory holds a temporary database that's being loaded from the master server's
database, and will become the actual database. A .move directory holds a .nidb directory that's
moved aside during conversion of a .temp directory to a .nidb directory. After this conversion is

complete, the .move directory is deleted. The .move directory is created only after the .temp
directory is completely filled.

These directories are examined during NetInfo startup. If netinfod finds a .temp directory without
a .move directory, then it knows the .temp directory was incomplete, and it discards the directory
since it will get a new database from the master shortly anyway. If netinfod finds a .temp
directory and a .move directory, it knows the .temp directory is complete and renames it to
the .nidb directory; it deletes the .move directory. If it finds a .move directory without a .temp
directory, it discards the directory.

You can find .move and .temp directories only while downloading a new database from the master
server. If a download is interrupted, netinfod cleans up the mess.ÐAMM

